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Summary

The Reynolds number Re being based on the angular velocity of the fluid and the radius of the disc, it is shown
that within a distance O(Re™%?) from the edge of the disc, the flow is determined by the Navier-Stokes
equations. The boundary-value problem describing this flow is formulated. The asymptotic behaviour of its
solution is investigated analytically and its complete numerical solution is evaluated. Results for various physical
quantities, among them the additional torque due to the Navier-Stokes flow, are presented.

1. Introduction

The classical problem of the flow of a rotating fluid above an infinite plane at rest has
been considered by Bodewadt [1]. This leads to a system of three coupled ordinary
differential equations for the three velocity components, which can be solved numerically
with arbitrary accuracy. The solution obtained by Browning is given in Schlichting’s book
[2]. If the plane is replaced by a circular disc of finite radius, the problem becomes much
more complicated.

On the basis of boundary-layer theory the problem of the finite disc has been
considered by Stewartson [3], Rogers and Lance [4] and by Belcher, Burggraf and
Stewartson [S]. They give expansions of the solution near the edge of the disc. However,
these are not valid in the immediate vicinity of the edge since the boundary-layer
equations lose their validity there. Due to the different boundary conditions at the disc
and just outside the disc, it is necessary to use the Navier-Stokes equations there. Since
there is inward flow near the edge of the disc, the problem bears resemblance to the
leading-edge problem of a flat plate placed in a uniform flow, [6]. However, it is more
complicated in several respects.

It is shown in the present paper that the Navier-Stokes region near the edge of the disc
is O(Re™%?), where Re = Qa?/v with Q the angular velocity, a the radius of the disc and
v the kinematic viscosity. The modification of the boundary-layer solution to the Navier-
Stokes solution gives rise to an additional term in the expression for the torque acting on
the disc, which is O(Re™!). The torque itself is O(Re™1/?).

It may be remarked that the flow near the edge of a rotating disc in a fluid at rest (von
Karman problem) resembles the trailing-edge problem of a flat plate and hence will show
a multiple-deck structure.
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2. The Navier-Stokes region (size and equations)

The full Navier-Stokes equations for the rotating fluid are in dimensionless form as
follows, see e.g. [2],
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introduction of a tangential vorticity component y by
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and elimination of the pressure leads to the following system of equations for v, y and ¢:
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We now suppose the Navier-Stokes region to be of size Re™* and the stream function in
that region to be O(Re™#), where a and B are both positive. Thus

1—r~0O(Re™™), z~O(Re™®), ¢~O(Re").
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This means:
u and w are O( Re®™#), vy~ O(Re?*™#),
1* derivatives of y are O( Re’*~#),
2" derivatives of y are O( Re**~#),

Since the Navier-Stokes region must be matched to the boundary-layer solution for
small positive values of 1 — r and to the rotating flow at the rest of its boundary, we have

v~0(1),
1* derivatives of v are O( Re®),
2" derivatives of v are O( Re?*).

The most important terms at the left-hand side of Eqn. (1a) are O(Re?*~#), while the
most important terms at the right-hand side are O(Re?*~ 1), These terms must be of the
same order and hence 8 =1.

Since in Eqn. (1b) the term 2vr~'3v,/9z is the term which causes the secondary flow (y
and ¢ to be different from zero), this term, which is O(Re®), must belong to the most

important terms in this equation. The other most important terms are O(Re**~2#) and
O(Re**~A~1) which both are O(Re**~?). Hence

a=4a-2=a=3,

This means that the size of the Navier-Stokes region is O(Re”2/?).
In this region we introduce the following quantities of O(1), denoted by capitals,

¥ = Rey,
X=Re*?(1-r), Z=Re¥’,

U= Re'?u, W = Re'’w, V=u,

) T oy T .oy
= 1/3 —_— - 1.1 —_— 127
P=Re" 7y, x=—Re 3., z=Re 35, (2)
ﬂ=Re'5/3ay, 6_2_1:= 5/38}',
X2 ar? 0Z? 9z2
W _ _ge23d W 2BV
ax - R gz TR
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Substituting into Eqns. (1) and retaining only the most important terms, which implies

to take r = 1, we come to the following system of equations:

0% 3V AV WV _ W W

8Z X X 9Z ax2  az®’

a¥r ¥ AC v _ T 9T
0Z 3X 09X 0Z 0Z gx? 9z2’

- HES SR EL
ax? az*’
where it has been used that
v v
U= —‘8—2‘ and W= *ﬁ.

The boundary conditions are at the disc,
X>0, Z=0: ¥ =0, — =0, V=0,

in the symmetry plane outside the disc,

114

X<0, Z=0: ¥=0, o>=0, TI=0,

(3a)

(3b)

(3c)

(4a)

(4b)

since V' is even in Z, while ¥ and I are odd functions of Z. Due to symmetry we need

only to consider the half-plane Z > 0.

For X — o the solution must become identical to the boundary-layer solution given in

[3] and [4], which is
Y=Re 2(1=r)"*{go(r)+0(1~-r)},
v+ Vy(7)+0(1~-r),

where 7= Re'/2z(1 — r)~1/4,
By aid of Eqns. (2) this is transformed to

X-> oo, V=X%,(7), V="Vy(r), t=2ZX V4

The order terms have been omitted since they are O(Re™%/3) smaller.

The functions V,(7) and ¢, () satisfy the differential equations
Vg’ + %IPOVE)/ = 07

o+ Iows — 32 = Vi -1

(4c)

(5)
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with boundary conditions
V,(0)=0, Vo(oo) =1,
$o(0)=0,  ¥;(0)=0,  yg(0)=0. (6)
Its solution has the following values

V5(0) = 0.439847747,

7(0) =1.068126931,
Yo(o0) = 1.691543111.

Finally, for Z — o and for X — — oo, the solution must represent the flow outside the
viscous regions. There ¥ =1, I = 0 while ¥ must be matched from its value X%} (cc) in
(4c) to ¥ = 0 as in (4b).

3. Transformation to other coordinates

Two different coordinate systems will be used, one for the analytical work and one for the
numerical procedure. First, we introduce parabolic coordinates £ and 7 by

X+iZ=(¢+in)’, X=¢£-nv°,  Z=2n. (7)
Transformation of Eqns. (3) to these coordinates results in

CR LA LA N 4 (8a)
dn 3¢ 9% I 3L a2’

¥ oT 3V oT v V) 3T 3T

R 1 [ -y oAy I SVIL N 8b

dn o0& 0t o (”ag gan) g2 o (8b)
FED R

4 +79)r= + . 8

(£2+7°) e an (8¢)

In parabolic coordinates only the quarter-plane § > 0, n > 0 needs to be considered.
The boundary conditions along the coordinate axes are

£>0, 7n=0: ¥ =0, — =0, V=0, (9a)
£=0, 7>0: ¥=0, TI=0, ~0. (9b)

Near the origin we have Stokes flow, where inertia forces can be neglected. The
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equations then become

LW
0—'6—7-*-‘—2,
_or, or
gz an?’
*¥ 0¥
42 +9*)T = + .
(5 7’) agZ anZ

The solution of this set of equations which satisfies the boundary conditions is

§

V=242, T=4 :
£+

V= By, (10)

where A and B are arbitrary constants. For ¥ and T' this solution is identical to the
Carrier-Lin solution near the leading edge of the flat plate, see [6] and [7]. It can be
verified with the aid of Eqns. (8) that all neglected inertia terms are of smaller order of
magnitude than the terms retained.

The boundary conditions for ¢ = oo become

¥ =£%,(7), V="Vy(7) where 7=2¢%y, (9¢)
Due to this condition £ and 7 would be more suitable coordinates in the viscous region

than ¢ and 5. However, for £ = 0 and finite values of 7, 7 goes to infinity. Therefore, it is
better to take

n=2/1+§-n, (11)

which has the same character for £ > oo as 7= 2¢'/29. Taking also in account Eq. (8¢c)
and condition (9¢) the boundary conditions for ¢ = oo become

¥ = £3/2‘P0(71) —3&%n5(m), V="V(r)+ 0(5-1) and
I = £/%5(n) +O(£7172). (5d)

The second system of coordinates, denoted by k, A, is obtained by a transformation
similar to (7), namely

f+in=(k+iA)’,  £=xk=N, q=2kA\. (12)
Transformation of Eqns. (8) to the k, A-coordinates yields

AV 3V 3V aV _ W W

oN ok kN ae? T an’ (132)
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¥ oL 3¥ ol 2 e 23 311}__321‘ T

T aA+8V{(3K WM)Ag, + (=3 )egy f=os e s (13b)

16(x? + )T = LY ¥ (13¢)
dx> )%

The region of interest is now the sector of the «, A-plane between the lines A =0 and A =«
(argument between 0 and 7 /4).
The boundary conditions are

k>0, A=0: ¥=0, %%=0, V=0, (14a)
] ) 4
N=ki  ¥=0, T=0, o-==0, (14b)
K= \I,=K3\PO(TZ)’ V=I/I)(72)’ (140)
I'=xyy(7),  wherer,=4x>X.

The final values y4(c0) and Vj(c0) =1 are approached exponentially. This means that
these values are already approximated with great accuracy for a finite value of 7, say 7,.
For 7> 1, and £ —» oo one has potential flow, that is =0 and V=1, while ¥ is a
harmonic function; 7, was taken equal to 28.

In both the &, n-plane and the «, A-plane the region of interest is divided into 3 parts
(see Fig. 1). Region I is the region where the full equations (8) and (13) must be
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Figure 1. Division of the integration region.
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considered. It is limited in the £, n-plane by the curve 2‘/m - =28 and in the «,
A-plane by 4«2\ = 28. Region II is limited in the ¢, n-plane by the line 5 = 30. Numerical
calculations, which were performed in £, n-coordinates show that it is justified to take
V=1 and I' = 0 in region II. In regions II and III only the harmonic function ¥ has to be
determined. In region III no difference scheme for the numerical solution is necessary
since the solution there can be given by aid of a Green’s function.

4, The asymptotic behaviour at infinity

The asymptotic behaviour will be investigated in the «, A-plane. In region I the main term
of the asymptotic behaviour is given by (14c). For region III we introduce polar
coordinates r, 8 in the k, A-plane. The asymptotic expansion of the harmonic function ¥
with ¥ =0 for § =7 /4 is

¥ = Pr¥(cos 30 + sin 36) + Qr” cos 26 + Sr(cos § — sin 8) + T(Z—— 0), (15)

where P, Q, S and T are constants to be determined. The highest power of r is 3 in
agreement with the behaviour in region I.
A useful asymptotic expansion in region II is obtained by transformation of (15) to «,
A-coordinates. This is
¥ = P> + 3kAP — 3kAP — PN + Qx> — ON + Sk — SA + T(%— tan']%). (16)
This expression must be matched to the asymptotic behaviour in region I. For A =
7,/(4x*) > 0 we obtain

‘I’=Px3+%P72+Qx2+Sx+%T. (17)

Matching to (14c) yields P =y,(o0). In order to determine Q, S and T we have to
investigate what the further terms in the expansion in region I are.
Let 2 terms of the expansions for ¥ and V be

¥ = "34’0(72) +"3_k¢k('rz),
V=V,(7)+c "V, (1), k>0. (18)

The difference between 7, and 7= ZX~'/*is O(x~®) for k = co. There will certainly be a
second term for k = 6 but we are interested in values of k smaller than 6.
Substitution of ¥ in Eqn. (13¢) leads to

T =xyg(n) +x'"Yi(n).

Substitution of ¥ and ¥ in Eqn (13a) gives as coefficient of x* Eqn. (5a). The coefficient
of k*~* leads to the equation linear in ¥, and v,,

AVY + 3V + kb, +(3 — k)Vi, = 0. (19)
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Substitution of ¥, V and I in Eqn. (13b) gives as coefficient of x>,

Yowg — 3Pode” + 8VoVG = 4yq”.

This equation can once be integrated. Determining the constant of integration by using
the boundary condition (6) for 7, — o, we find back Eqn. (5b).
The coefficient of k°>~* leads to the linear equation

A9+ 39wy — (1= k)bodi — dobi + (3= k) g ¥ — 8(VVi + ViVi) = 0.
Also this equation can once be integrated with the result that

49" + 39y — (4 = k)podi + (3 — k) gy, — BV V, =0, (20)
where the boundary condition

T, = 0, (r)—>0 and V,(7,)—0

has been used. ‘

Now, the question is: can y; (c0) be different from 0, that is, can {,(r,) be linear in 7,
for 7, > «o? If this were so, ¥ contains a second term k> ~*r,. Such term must be matched
to Eqn. (17), valid in region II for A — 0. It is seen that this is impossible for k < 3 but
required for k= 3.

Equation (19) then becomes

4Vs” + 3( ‘PoVs)’ =0
or, integrated,
4V; + 3¢V, =0

with the solution
Vi(r)=4 exp(—%jﬂxpod'r).
0

Since V;(0) should be zero, we find that V;(r) is identically zero.
Equation (20) for ¢;; now becomes

43"+ Bpody — Wiy =0
with boundary conditions
‘P3(0)=0’ ¢3(0)=0, \Vs(w):%‘l’o(w)-

For 7,—> o we have y;(7,)=ar,+ B with a= 3y,(c0)=1.268657333. Numerical
integration leads to

B = —2.35267532.
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Returning to the asymptotic expressions (15), (16) and (17) it will be clear that

0=0, S§=0, =%,B. (21)

5. The origin shift and the first eigenfunction

The asymptotic behaviour in region I,

V4 Z
‘I’~X3/41P0(X1/4), V~VO(W) for X—»oo,

would also be valid if the edge of the disc were not at X = 0, but at some other finite value
of X. Hence

‘I"‘(X"‘a)sﬂ‘l‘o(—_z_)]_ﬂ)’ V~¥,

v
(X+a (X+a)"*

also describes the asymptotic behaviour. For small values of a the differences between the
two expressions are terms with 9¥ /3X and 0V /9 X. Hence 3¥ /0.X and 0V /3 X must also
be present in the asymptotic expansion of ¥ and V, respectively. We calculate these
derivatives from the asymptotic behaviour, given above, as

oy 1 (14 1
EYan 4_"(34,0_7-2%), X =" ZFTZV(; for x— 0.

The asymptotic expansions (17) can now be extended as
¥ =ko(7) +¥5(m) + 67 Wu(1),
L=y (n) +x 45 (n) +(n), (22)
V=Vo(m)+ k().

where Y,(7,)=c¢(3¢, — »,¥4) and V,(7,) = —cnVj with ¢ a constant, which cannot be
determined from asymptotics but which follows from the complete solution of the flow
field. The eigenfunctions y,(7,) and V,(r,) satisfy Eqns. (19) and (20) for £ =4 and the
boundary conditions

¥,(0)=0, ¢,(0)=0, ¥4(0)=0, V,(0)=0, V,(0)=0.
There exists no smaller value of k which admits a non-trivial solution of Eqns. (18) and
(19) with homogeneous boundary conditions.
6. Numercial calculations (theory)

The numerical calculations have been performed in the £, n-plane since these coordinates
are better adapted to the behaviour near the origin.
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Since I" goes to infinity near the origin, we introduce a new variable
K=(¢+79)T.
The equations (8) then become

2 2
QW N _ W W (240

0¥ 0K 3V 9K 2K o o 2 2 oV aV)
——— e —— | — — | + + — +&—
an 9 OF am g2+n2( Sy g ) A ngg g
4 oK oK 9’k 3K
+ b7+ = —K|=—7 + —, 24b
§2+n2(£35 U ) e o (24b)
2 2
4K=a\1f+a\p, (24c)
g o’
£>0, n=0: ¥ =0, %=0, V=0, (25a)
£=0, 7>0 ¥ =0, K=0, 2—I£/=0, (25b)
g£—>c0, omfinite: ¥ ~&%(n), K~&25(n). (25¢)
In region I we transform Eqns. (24) to new coordinates, defined by
L=t m=—1_ with A(f)= ———. (26)
A(§) 2/1+¢
Writing again £ instead of £;, the result is
1{a¥or av¥ v\ oV v X L 174
ilose - S ae)- o~ Rimagar, T (Re+ Ra)TE F Range
(27a)
1(0¥ 0K ¥ OK|_ 2K (nAm+E3¥  3¥
A\9r, 38 T B on ) gaqp\ A4 on  eg
aV g_T]A,’Tl BV 4 aK n'—gA,T] aK
2 2 i D bl S A _ LA S Sl
+4(¢ +’7)1/(’7ag+ 4 871) gz+nz( 08" 4 on
—az—K—zR —8—2—K—+(R 2+R)82——K+R LLY (27b)
- g2 1M agar 4T 5 8712 3T a7,
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2y 2% , 92w 9K
4K = —égz— —2R]'r]5§; +(R4'r] +R5)a—T]2 +R3T]a—’r]_’ (270)
where
A A/Z A A/2 1
LA BreT Ry B

In order to keep the dependent variables finite for £ — oo, we introduce

¥(¢, 1) K(bm)
1+¢) (1+¢)°

Both ¥, and K vanish as O(¢~'/?) for £ — 0. The equations for ¥,, K, and V become

\Pl(g’ 71)= K](E» ’r])z (28)

(L+§) (3% v 3% av| 21+, ¥
A ar, 9¢ 9§ ot A 197,
3V v L% 1%
= a_EZ —2R]T] aga’r] .+(R4712+R5)a—’r]2 +R3T]a_fr1’ (293)

(1+6)° (3% 3K, 3% 0K, | 1+4(, 201+H(dn+8)),
A ar, 9§ 9§ o A £+ Yo
2
v 9K
N 29(1+¢) i 2(1+£)~I’1——‘ N 47(1 +£)~I’1K1
£ + 92 3¢ A o, £2 + 7P
LA o 5o ntn )
(1+¢p \o& 4
0%K, 9°K, 5 9K, 6 4¢ | 9K,
T —2R,T,m +(R 2+ R5) = 1 Frr) 0

R _6R11'1 _—4(1]"514'1'1) ¢
MTTRE T (Brn)4 [ o

6 12¢ 4
+{(1+g)2 (1+&)(82+7%) i £2+n2}K" (29%)

2%, 2% ¥, 4 Y,

9 LAY 2 _4 ™
41+ §)K, = ye 2R17185371 +( R4+ Ry) o + T+E o
4R, \ . dV¥
+(R3———‘—)71——‘-+ 2 ¥, (29¢)
1+¢ am (1 +£)
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One more transformation for each of the independent variables £ and 7, has been
performed. The infinite interval £ € [0, o0) has been transformed into ¢ € [0, 1] by the
relation

o=———£—-——— with ¢=0.25. (30)

(c+yI+E)’
Given o, £ follows from the quadratic equation
(1-0)’¢2=20{(a+ 1)t = (o - 1)} ¢+ 02(c2 - 1)* =0.
For £ — oo it is easy to show that
1-a=2c¢t"124+0(¢71).

Thus, ¥, and K, vanish for 6 — 1 like O(1 — a).
The transformation of 7, € [0, 28] to u € [0, 1] is realized by

™, = 4u + 24p*. (31)

The advantage of this transformation is that an equidistant distribution of points in p
leads to a greater density of points for small than for large values of 7, which better
corresponds to the behaviour of the dependent variables.

Derivatives to £ in Eqns. (29) are now replaced by derivatives to ¢ using

d _dod 3 (do}'d  d’ 3
0t  d¢ de’ 9¢2 d§] 92 dg? 9o
with similar formulae for the change of r,-derivatives to p-derivatives.
Next, the ¢ and p-derivatives are replaced by central differences applying an equidis-

tant grid with meshes # and k in the o, p unit square.
The boundary conditions are

(i) p=0, ¥(s,0)=0, ¥(s,0)=0,

)2 8%,(0, k) — ¥ (0, 2k) (32)

d
Ky (o, 0)=Rs(£)(d—f‘ e 8k2(1+¢£)

1

The last formula is the so-called plate condition, which follows from Eqn. (29¢) using

vy,

_8—71

¥, =0 for 7,=0.

The error in this formula is O(k?).

(il) o=0, ¥, (0,p)=0, K, (0,p)=0.
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The boundary condition ¥V /9§ = 0 in §, n-coordinates, see Eqn. (25b), becomes in £, 7,
coordinates

3 Rl(o)f,a%’? ~o0,
which leads to the discretized result
R, (0) ifl- ,
WO, k) =aV(h, p) = V(2h, ) =~ 7 VO, + k) = V(0, k.~ k)}.
(4)...
(33)
Also this formula has an error which is quadratic in the mesh lengths,
(i) p=1, V(e,1)=0, K,(0,1)=0.
Along this boundary the function ¥, should be continued smoothly into region II.
(ivy o=1, ¥ (L,p)=0, K,(1,p)=0, V(,p)=V(n).
Region II is limited by
o=0, o=1, m=2/1+§-9,=28 and 7u,=30.
In this region coordinates §; and A, defined by
—n,(§
f=£ A= #%2((?)) (34)
are used.

Writing again £ instead of £, and introducing at the same time ¥, instead of ¥ in Eqn.
(24c), this equation becomes

%Y, L 20w 22y (A=1’n2+13%% 4 Y
0§’ M= M Ay gy 0N 1+£ 3¢

A—1 [ 4n, 29’} 8\1'1+ 2

144

= + ——=¥, =0.
o= M\ 1+§ K Mo— M) OA (1+§)2 !

(35)

The transformation from £ to o is again used.
The boundary conditions for region II are as follows:
(i) A =0:Smooth continuation of ¥, toward region I,
(ii)) o0=0:¥,(0,A)=0,
(iii) A =1:Smooth continuation of ¥, toward region III,
@iv) o=1:¥,(1,N)=0.
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The ¢ and A-derivatives in the equations are again replaced by central differences using
an equidistant grid with meshes 4 and / in the ¢, A-unit square.

At A = 0, the boundary between regions I and II, we also apply Eqn. (35). Derivatives
to A at A =0 can only be approximated by differences based upon the unequal meshes
A =/and A =A7(o), where A (o) denotes the negative A-value corresponding to the points
in region I with p=1— k.

In region III we consider the equation

32¥ VY

-'a—é"z"-l-a—'rlz'= . (36)

The boundary conditions are:
(i) £=0:¥(0,79)=0,
(ii) ® =7, : Smooth continuation to the solution in region II.
(iii) In the §, #-plane the asymptotic behaviour in polar coordinates is

¥ = P,r’/?(cos38 + sin38) + Q,r cos § + S;r'/*(cos1f — sinif) + Tl(% - 0). (37)

Matching to region I means 5 small in such a way that £!/%y =1/2 remains finite for
£ - 0. With

n 1 n -1 n
=§{l1+—|,  coszfd=1-——, sinzf=-5,
r 5 2£2 2 8&2 2 2£
we obtain
T
V=P (£ +31)+ Q.+ 5¢77+ ETl' (38)

From relations (11) and (14c) we find that both 7 and 7, may be replaced by
=36+ 0(¢72)
and hence the asymptotic behaviour of ¥ in region I follows from (9¢) and (18) as
¥ =824 (m) = 3815 (n) +ds () + O(6712).

For 7, > oo (7 small but unequal to 0), the exponential decrease of y(7,) and the
asymptotic behaviour of (), given in Section 4, make that we can write

¥ = §3/24z0(oo) +am + 8

and hence, by comparison with (38) we have

2
Pi=do(®),  a=ide(), Q=0 §=0, T=Z8
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The asymptotic behaviour of ¥ in region III (and also in region II) is then obtained from
(37) as

¥ =y(o0) - r/*(cos2f + sin26) + 3(1 - _2;0)

Since the right-hand side is a harmonic function, we now introduce the harmonic function
3/2 3 3 20
¥, (& m) = ¥(& ) —¢o(0)-r**(cos38 +sin38) — B|1 - — |, (39)

"which vanishes at infinity, satisfies ¥,(0, n) =0 and should be in agreement with the
solution of region II along the line 7 = 7.
The solution of ¥, in region III is obtained by a method due to Botta and Dijkstra [7],
which uses a Green’s function for the Laplace equation in the quarter-plane. This function
is

GV (P, Q)= —Re log——wl—

w"‘12

where P= (A, ), Q= (A, py), w=A+ip, wy =X, +ipg, A, Ay, &, By, > 0 and Re stands
for “real part of”.

When the harmonic function ¢(Q) vanishes along the boundary g =0 and at infinity,
we obtain for ¢ in an arbitrary point P,

% ) w2 — wl |
279(P)= = [ 9(Q)|5—Relog———=| dA,  @=(),,0),
0 (31 we— 4y =0

*
wh

0 A] ‘
or 277.;>(1r>)=—4f0 #(0) Im—=—d,

1

where Im denotes “imaginary part of”.
For points P lying near the boundary ¢ =0 we modify the last integral as follows

J\
—dA,,
-2

1

2m9(P) = —4["(#(Q)~9(@)} I3z a), —4¢(Q)f Im—

.where Q' = (A, 0) is the projection of P on the boundary u=0.
The last result can be reduced to the form

A dA,
(R =N+ p2)" + a2 ,

m(P)=(7-20)8(Q) +arn [ (4(2) ~4(2))

where 8 = arg w = tan"'(p/A). ‘
Applying the last formula to the harmonic function ¥, in the £, n-plane with values
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given along the line n = 7, the result is

"\I'z(ga n) = (7’ - tanil%@)wz(gv "70) +4&(n— "70)/000{\1'2(5,’ "70) - ‘I’Z(E, 770)}

x gd¢ ' (40)

(¢ - +(n- "10)2}2 +ag2(n—n,)"

The remaining integral is evaluated by aid of quadratic approximations of ¥,(¢’, n,) —
¥, (£, mo) in each interval §;,_, < §’ < §,,, with j odd. This allows analytic calculation of
the integral in each interval, see (7). The points £, correspond to the mesh points obtained
in the equidistant o-distribution.

The points £, 7 in region III where ¥, is calculated from (40) have the same §-values (or
6-values) as the points in regions I and II, while 7 is defined by (34) with A =1 + /, where /
is the mesh length of the A-distribution. Thus

n=mno+{n,—n,(§)}.

The values of ¥, (&, n,) follow from (39) by substitution of
17
Y(Em)=(1+6) (k)  r=yE+ai,  f=tan'PL.

Having obtained ¥, (£, #) from (40), the corresponding value of ¥,(£, 1) is given by

1
(1+¢

O e (a8 m) +90(0)r(cos20 + sin%()) (12} @

where r = /¢* + 7%, 0 = tan "'y /¢. ‘
Then, an improved value of ¥,(£, 1,) can be obtained from the same formulae as
applied in region II, using the (o, A)-grid with

0<ox1, O<Agl+ 1

7. Numerical calculations (practice)

The final solution for V, K, and ¥, was obtained by application of the S5-point
SOR-method.
One iteration step consisted of the following actions:
(i) calculation of V from Eqns. (29a) and (33) in all points of region L.

(ii) calculation of K, from Eqns. (29b) and (32) in all points of region I.

(iii) calculation of ¥, from Eqns. (29¢), (35) and (41) in all points of regions I and II as
well as in the points A = 1 + /. Equations (29) and (35) are used, of course, in their
difference form. The relaxation factors were 0.6 for V, 0.5 for K, and 1.65 for ¥,.
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The following initial values were taken:

§+87 “(r). §+¢7°

region I V =V, (), K, = ¥, = 4’0( 1)
1+¢)’ (1+¢)
region IT: ¥, = &7 24/0( ).
1+4)°

These values have the correct behaviour for £ = 0 and £ — oo as far as the main terms are
concerned.

In order to check the solution, 3 different grids have been used. The coarsest grid is
defined by

h=0.1, k=0.1, /1=0.2.

The two other grids were obtained by twice reducing all meshes by a factor 2.

8. Results
8.1. The azimuthal velocity V

In Fig. 2 curves of constant V-values in the X, Z-plane are presented. The curve denoted
by ¥'=1 means in fact ¥ =1— 0.5 X 107>, According to Rogers and Lance [4] the value

T —————

|
T
]
L

y 3 E: v -1 -2 - -4 -5

Figure 2. Lines of constant azimuthal velocity V.
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Figure 3. Lines of constant streamfunction ¥.

V =1 is approached for £ — co as e ™*" with a = 3y/(c0). However, the present calculations
suggest that for small values of { (that is along the axis with negative values of X) the
approach to V=1 is no longer monotonous but contains a small oscillating factor. The
corresponding overshoot is limited to 1.00020. Hence, it is not quite sure whether this is a
real phenomenon or that it is due to a discretization error.

It follows from (4c) that for £ — oo (large positive values of X)) the curves V' = constant
have the asymptotic behaviour X = c¢Z*.

8.2. The streamfunction ¥

Figure 3 shows streamlines (¥ = constant) in the X, Z-plane. It is seen that for negative
values of X (outside the disc) ¥ is proportional to Z, while for positive values of X (at the
disc) ¥ is proportional to Z*. Asymptotically for X — cc the curves behave like XZ® = .

The non-scaled streamfunction y = Re™'¥ is O(Re™!) in the Navier-Stokes region, see
(2). However, for X —» oo ¥ becomes infinite like X374 = Re!/?(1 — r)3/4. This matches
the streamfunction ¢ in the boundary-layer region which is O(Re™/2(1 — r)*/4).

8.3. The vorticity T’

Curves of constant I are shown in Fig. 4. The curve I' = 0 means in fact ' < 0.5 x 107°.
Analogous to the situation with V, the exponential decrease toward I' =0 for large
contains for small § an oscillating factor leading to a maximum of I" = 0.00004.

For § - 0, i.e. X = o0, T becomes infinite like X'/4. For Z = 0 and negative X we have
r'=o.
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Figure 4. Lines of constant vorticity I'.

At the origin the value of I is indefinite. All curves for positive I lead to the origin and
are tangent to the negative X-axis at the origin. Approaching the origin along a straight
line leads always to I — oo (except along the negative X-axis).

The non-scaled vorticity y is O(Re!/?) in the Navier-Stokes region. For X —» 0, I’
becomes infinite like X'/* = Re'/%(1 — r)'/%, This matches the vorticity v in the boundary
layer region, which is O(Re'/%(1 — r)'/%).

8.4. The tangential shear stress 1.*

An asterisk denotes a physical quantity not made dimensionless. Then

av* v v
T = P = ,uQ—a; = ,uQRezﬂﬁ =1uQRe

231 OV
£0Z°

Since p = pv = pa’QRe ™!, the shear stress becomes

¥ = %pazﬂzRe”ﬂ% gi;

Using Eqns. (26) and (31) to transform the derivative to 7 into a derivative to u, we obtain

1+§ v
£ op

* =1pa’Q*Re™ 13
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Since the derivative in this formula should be taken at p = 0 and since V(o, 0)= 0, the
final result for the dimensionless shear stress is

T —_

= 81kRe'1/3ﬂ;—£{4V(0, k)= V(o, 2k)}.

For X — oo 7, vanishes like X~'/4=Re™'/¢(1 — r)~'/*. Hence, the shear stress in the
boundary-layer region becomes infinite like O(Re™"/2(1 —r)~'/*).

Figure 5 shows Re'/7, as function of X. For X—0 7, becomes infinite like
0.502Re™ '3 x V2,

8.5. The radial shear stress T*

The radial shear stress is given by

du*
T*=u Py
We reduce
du* du aU 92
* — = —_— == 1/3~— = — 1/3 =
T =pas TRy 3s QRe 37 pf2Re 277
1+¢)
—uQRe'°T = -—paZQZRe’zﬂ(—gz—g)—Kl(& 0).
‘r l ‘ J R:i:
F ‘[ l 3.50
l ; 3.00
| l
; |

2.00

| |

|
7 6 5 q 3 ] 1 o &

10 9

Figure 5. The tangential shear stress Re'/?s, as function of X.
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For £ » 0 K, vanishes like O(§¢) according to (10), which implies that 7, becomes
infinite like 1.234Re~2/3X"1/2,

For ¢ — oo K, vanishes like O(¢~1/2) and, hence, 7. becomes infinite like £1/2 = X1/4 =
Re'/%(1 — r)!/4. This matches the radial shear stress in the boundary layer which vanishes
like O(Re™ 121 — r)/%).

Figure 6 shows Re?*r as function of X. The negative values denote that the radial
stress is directed toward the disc centre.

8.6. The torque M* on the disc
The torque M* is given by

a
M* =27 [ reridre,
0

We are interested in the contribution of the Navier-Stokes region to the torque. Let this
region extend from r* =r¥ to r* =a, where a — r} = aO(Re~%?). Retaining only the
main term in O(Re) we have in this region

r*=a, dr¥= —aRe 3 X = —2aRe~¥3¢d¢.

while
' 1+¢ 9V
% — 01202 — 2 n202R,—1/3 oV
T*=pa“Q°r, = pa“°Re T an
|, ﬁ T -16

0 9 ) 7 6 S u 3 2 1 0
X

Figure 6. The radial shear stress Re?/?r, as function of X.
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Hence, the contribution of the Navier-Stokes region to M* is equal to
%14
4mpaQRe™ [ —/
mpa’Q°Re o 1+ £d¢,

where £, is the §-coordinate corresponding to the point r§. For £, — cc the integral
diverges. This is due to the fact that boundary-layer theory leads to a torque O(Re™1/2).
According to boundary-layer theory the tangential shear stress is

dv o0

"= "Q'a? 2"9371*61/2(1 —r) = pazﬂzRe‘l/z%(l —r) 4

Integration over the Navier-Stokes region yields

2wpa592Re_]/2fl%(l - r)‘1/4dr
- 2'n'pa592Re”1fXOa—V-X—1/4dX
0 T
_ so2pa—1 [0V 41, 42
=47pa’*Re ./(; aTﬁ dé. (42)

The additional moment due to the fact that near the edge of the disc the Navier-Stokes
equations should be used instead of the boundary-layer equations is

My = 4'7z-p(1592Re_1f00{ili 1+¢- V(;(O)‘/g}dﬁ.
o |97
This integral converges since

gTV\/m= %I_I{Jg and V= I/()(T)+O(§_2) for g—) 0, see (22)
1

The final result is

M* = 47rpa592Re_1f

1{4V(o,k)-—V(o,2k) de

- T+ E- VO ) 357z
or, after evaluation
M¥ =402pa°Q?Re™ .

Since the integral in (42) diverges like O(£2/2) = O(X?>/%)= O(Re'/?), it is clear that
the boundary-layer contribution to M* is O(Re™1/?).

8.7. The pressure p at the disc

According to the equation of motion given in Section 2 we have at the disc

o _ B
ar_Re 822
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or, in the Navier-Stokes region,

.QE._ ~2/3ﬂ_]= —2/3ﬂ.= —2/3£
5% Re 877 Re 3z Re 3z

Integration leads to

p-p(@) =R [* T qx - Re‘2/3f§0£
0

172
o re-23 (00K FdE o o 80K (1+£)
2Re foaf\/zg2 2Re foaﬁ g g

where p(0) is the pressure exactly at the edge of the disc. It will later be shown that this
pressure is finite.

Since for £ = o0, K; ~ O(§71/2), the integral is divergent. As in Section 8.6, this is due
to the fact that boundary-layer theory leads to pressure differences at the disc which are of
a larger magnitude than O(Re™?/?). In order to obtain a convergent integral we have to
subtract the contribution of boundary-layer theory which can be done by subtracting the
asymptotic expansion of 0K /dt for § = so. Using (22), this expansion appears to be

aK

aT _ §5/24/0/// (0) +§4/3/// (0) +£1/2 4m (0) +0(§—1/2)’ g_) 0.

=0

Since ¥,” (0)= —1, ¥3” (0) =0, ¥,” (0) = 0, the result for the pressure is

p—p(O)=2Re_2/3f

e{% 1+¢)"”
0

g +§}d£ (43)

and this integral is convergent for § — oo.
The boundary-layer contribution is equal to

p "P(O)Ib./.= —2Re_2/3f£§d§= —Re"¥r=,—1
0

or

p* = p*(0)|,,.=pa’Q(r—1). (44)
This is exactly in agreement with the pressure due to the centrifugal force, which is
p*=1pa’@r?,  p*(0) = 3pa’Q?
and hence leads, in first approximation again to (44).

It remains to show that p(0) exists, which means that the integral in (43) should
converge at the lower boundary. It has been shown in [7] that the next term in the
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expansion (10) of ¥ near the origin is
¥ =B(&' - 3n*).
It follows from Eqns. (8) that near the origin this second term also satisfies
AV =4(£*+9?)T and AT =0.
Hence I' = 1¢B and K= 1£(¢% + n*)B.

Then for § - 0, 9K/d7, = 139K /3m = 3£nB, which vanishes for n = 0. Hence 3K /97, is
at most O(£7) for £ — 0 and this guarantees the convergence of the integral in (43) at the
lower boundary.

Due to the inaccuracies in the numerical calculation of the integrand in (43), both for

small and for large values of £, it appeared to be impossible on the basis of the performed
calculations to present reliable results for the pressure term of O(Re™2/?).

8.8. The velocity U outside the disc in the plane Z = 0

The plane Z = 0 outside the disc corresponds to £ = 0. We have

v 1 (0¥ 1 v v
U= 55 = a5 ), 5[], R0 |

Figure 7. The velocity U outside the disc in the plane Z = 0.
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For £ = 0 holds 0¥, /07, = 0 and hence,

__Lawy __ 1 2 0%, __ 1%
U—_Zn(aé),]_ 2n{(l+§) T +2(1+§)\If1}— 3y 3F

Using (30) for calculating do/d¢=1/(1 + ¢)? if £ =0, we find

4w () - % (2h,n)
4hn(l+c)2

Thus

4\I’1(h, "7)‘\1'1(2}” 77)

u*= —aQRe” /3 3
dhn(1+c¢)

Figure 7 shows Re™'/*u as function of X.
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