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The flow near the edge of a disc at rest in a rotating fluid 
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Summa~ 

The Reynolds number Re being based on the angular velocity of the fluid and the radius of the disc, it is shown 
that within a distance O(Re -2/3) from the edge of the disc, the flow is determined by the Navier-Stokes 
equations. The boundary-value problem describing this flow is formulated. The asymptotic behaviour of its 
solution is investigated analytically and its complete numerical solution is evaluated. Results for various physical 
quantities, among them the additional torque due to the Navier-Stokes flow, are presented. 

I. Introduction 

The classical problem of the flow of a rotating fluid above an infinite plane at rest has 
been considered by BiSdewadt [1]. This leads to a system of three coupled ordinary 
differential equations for the three velocity components, which can be solved numerically 
with arbitrary accuracy. The solution obtained by Browning is given in Schlichting's book 
[2]. If the plane is replaced by a circular disc of finite radius, the problem becomes much 
more complicated. 

On the basis of boundary-layer theory the problem of the finite disc has been 
considered by Stewartson [3], Rogers and Lance [4] and by Belcher, Burggraf and 
Stewartson [5]. They give expansions of the solution near the edge of the disc. However, 
these are not valid in the immediate vicinity of the edge since the boundary-layer 
equations lose their validity there. Due to the different boundary conditions at the disc 
and just outside the disc, it is necessary to use the Navier-Stokes equations there. Since 
there is inward flow near the edge of the disc, the problem bears resemblance to the 
leading-edge problem of a flat plate placed in a uniform flow, [6]. However, it is more 
complicated in several respects. 

It is shown in the present paper that the Navier-Stokes region near the edge of the disc 
is O(Re-2/3), where Re = f~a2/v with [2 the angular velocity, a the radius of the disc and 
v the kinematic viscosity. The modification of the boundary-layer solution to the Navier- 
Stokes solution gives rise to an additional term in the expression for the torque acting on 
the disc, which is O(Re-1). The torque itself is O(Re-1/2). 

It may be remarked that the flow near the edge of a rotating disc in a fluid at rest (von 
Karman problem) resembles the trailing-edge problem of a flat plate and hence will show 
a multiple-deck structure. 
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2. The Navier-Stokes region (size and equations) 

The full Navier-Stokes equations for the rotating fluid are in dimensionless form as 
follows, see e.g. [2], 

OU aid 02 ap l ( 0 2 u  l O u  - -  U 0 2 # )  

U ~ r + W ~ z - 7 = -  O--r- + R e  0r 2 r Or r ~ ~- ' 

oo oo uo=±(o2o 
r R e  ~ Or 2 

1 0o v 02U ], 
r Or r 2 F'~Z2 ] 

aw Ow ap 1 [ 02W 1 Ow 02W 

U -~r + W "~z = - -~z + -~e [ O r-----7 + r -Orr + -~z 2 ) ' 

with the continuity equation 

1 O (ur )  Ow 
r Or +-~z --0" 

Lengths have been made dimensionless with a, velocities with fla and the pressure with 
p~2a2. 

Introduction of a stream function ~k by 

1 O~ 
U = - - - - - -  w = _ - -  

r Oz ~ 

1 0q, 
r Or ' 

introduction of a tangential vorticity component 7 by 

Ow i au 
Y = Or 0z 

and elimination of the pressure leads to the following system of equations for v, y and ~p: 

Ov Ov uv 1 (02v 1Or  v 02v) 
. . . . . .  

r R e  Or 2 + r  Or r 2 + O z  2 ' 
(la) 

0y 0y uy ¢ 2v by 1 ( 0 2 y + l  by y 02Y] (lb) 
U -Orr + W O z r r ~z--R-ee~Or ---~ r Or r 2 + ~ z  21 ' 

1(02~ b l Ozk 02~k) 
Y = r  Or 2 r Or {-~Oz 2 • (lc) 

We now suppose the Navier-Stokes region to be of size R e  -~  and the stream function in 
that region to be O ( R e - P ) ,  where a and fl are both positive. Thus 

1 - r - O ( R e - ~ ) ,  z - O ( R e - a ) ,  ~ - O ( R e - ~ ) .  
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This means: 

u and w are O(Re~-a) ,  ~ - O(Re2~-#) ,  

1 st derivatives of y are O( Re 3~-/~ ), 

2 nd derivatives of y are O( Re a~- ~). 

Since the Navier-Stokes region must be matched to the boundary-layer solution for 
small positive values of 1 - r and to the rotating flow at the rest of its boundary, we have 

o - O(1),  

1 st derivatives of v are O ( R e " ) ,  

2 "a derivatives of v are O(Re2") .  

The most important terms at the left-hand side of Eqn. ( la)  are O(Re2~-¢), while the 
most important terms at the right-hand side are O(Re2"-l) .  These terms must be of the 
same order and hence fl - 1. 

Since in Eqn. ( lb)  the term 2vr-lOv/Oz is the term which causes the secondary flow (y 
and q~ to be different from zero), this term, which is O(Re"), must belong to the most 
important terms in this equation. The other most important terms are O(Re 4~-2t~) and 
O(Re4"-t~-l),  which both are O(Re4"-2). Hence 

a = 4 a - 2 ~ a = ~ .  

This means that the size of the Navier-Stokes region is O( Re.- 2/3 ). 
In this region we introduce the following quantities of O(1), denoted by capitals, 

el = R e + ,  

X =  Re2~3(1 - r) ,  Z = Re2/3z, 

U= Rel/3u, W =  Rel/3w, V= o, 

OF = _ R e _  1 O_.7_V P--F-F = Re -I O~ (2) 
F = Re-1/3y,  OX Or ' OZ Oz ' 

02F _ Re -5/3 ~2y 02F = Re -5/3 02y 
OX 2 Or 2 ' OZ 2 Oz 2 ' 

OV Re-  2/3 0 v  0___V_V = Re-  2/3 0u  
0X Or ' 0Z 0z ' 

O2V = R e - 4 ~  3 ~ 213 02V  = R e - 4 ~  3 0 2v 

OX  2 Or 2 ' O Z  2 ~Z 2 " 
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Substituting into Eqns. (1) and retaining only the most important terms, which implies 
to take r = 1, we come to the following system of equations: 

Off OV Off OF 02V 02V 
-~ (3a) 

OZ OX OX OZ OX 2 OZ 2 '  

Off' OF O~ OF + 2 v O V  oZF + 02F 
(38) 

OZ OX OX OZ OX 2 OZ 2' 

F - -  02xIt 02XIt 

- - ~  +--,OZ 2 (3c) 

where it has been used that 

Off Off 
U = - - -  and W = - - -  

OZ OX" 

The boundary conditions are at the disc, 

Off 
X > O, Z = O: ff = O, = O, V = O, (4a) 

.~ 3Z 

in the symmetry plane outside the disc, 

0V 
X <  O, Z =  O: ff = O, 3--~ = O, F = O, (4b) 

since V is even in Z, while ff and F are odd functions of Z. Due to symmetry we need 
only to consider the half-plane Z >/0. 

For X ~ o0 the solution must become identical to the boundary-layer solution given in 
[3] and [4], which is 

¢ = Re-l~2(1 - r )3 /4(Co(Z)  + 0 (1  - r ) } , ,  

v+ o 0 -  r), 

where ~" = Rel/2z(1 - r)-1/4. 

By aid of Eqns. (2) this is transformed to 

X ---~. ~ ,  • ~-- X 3 / 4 l , p o ( ' r ) ,  V = Vo("T) ,  "/" = Z X  -I/4. ( 4 c )  

The order terms have been omitted since they are O(Re-2/3)  smaller. 
The functions Vo(~) and ~k00") satisfy the differential equations 

It 3 t vg + ~ o V ;  = O, 

3_.,. a/, _ ½~ko ,2 Vo 2 _ 1 (5) q~o" + 4 ~ - o v o  = 
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with boundary conditions 

Vo(0) = 0, V0(o¢) = a, 

#0(0) = 0, ¢5(0) = 0, ¢5(00) = 0. (6) 

Its solution has the following values 

V~ (0) = 0.439847747, 

q,g'(0) = 1.068126931, 

#o(OO) = 1.691543111. 

Finally, for Z + o0 and for X + - 00, the solution must represent the flow outside the 
viscous regions. There V = 1, F = 0 while ,I, must be matched from its value X3/4+o(OO ) in 
(4c) to q' = 0 as in (4b). 

3. Transformation to other coordinates 

Two different coordinate systems will be used, one for the analytical work and one for the 
numerical procedure. First, we introduce parabolic coordinates ~ and 7/by 

X + i Z = ( ~ + i n )  2 , X = ~ 2 -  gl 2 , Z = 2~5v/. (7) 

Transformation of Eqns. (3) to these coordinates results in 

3qi t 3V a~t t 3v 32v a2v 
- - + - -  (8a) ~ a~ ~ ~ a~2 ~ 2  ' 

o ,  a r  a .  o r  ( ov  ov) a:r a:r 
(8b) 

2 ~  ~2~tt a2~tt 
4(4 2 +~  ) .  = -3--~- + - -  (8c) 3~2 

In parabolic coordinates only the quarter-plane ~ >/O, ~ >/0 needs to be considered. 
The boundary conditions along the coordinate axes are 

a ' I '  
~ > 0 ,  71=0: ¢z=O,  O,/ = 0 ,  V = O ,  (9a) 

3 V  
= 0, 7/> 0: g / -  0, F = 0, a-~- = 0. (9b) 

Near the origin we have Stokes flow, where inertia forces can be neglected. The 
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equations then become 

02V ~2 V 
0 =-~-~- + - -  

372 ' 

02F ~2F 
0 = - ~ + - - ,  

372 

02,I, 
+ 7 )r = - -  ~ 2  

0z,t , 

37 = 

The solution of this set of equations which satisfies the boundary conditions is 

g' = 2A~72, F = A  ~z + 72, V = B T ,  (10) 

where A and B are arbitrary constants. For ,a,, and F this solution is identical to the 
Carrier-Lin solution near the leading edge of the flat plate, see [6] and [7]. It can be 
verified with the aid of Eqns. (8) that all neglected inertia terms are of smaller order of 
magnitude than the terms retained. 

The boundary conditions for ~ ~ m become 

'I t = ~3/2~b0(~" ), V= V0(r ) where r = 2~'727. (9c) 

Due to this condition ~ and • would be more suitable coordinates in the viscous region 
than ~ and 7. However, for ~ = 0 and finite values of r, 7 goes to infinity. Therefore, it is 
better to take 

r, = 21/1 + ~ "7, (11 )  

which has the same character for f --+ ~ as r = 2~1/2 7. Taking also in account Eq. (8c) 
and condition (9c) the boundary conditions for ~ ~ ~ become 

~=li3/2~o(r,)-½fi'/2¢,~p'o(r,), V= Vo(r , )+O( l i - '  ) and 

r = ~l/21p0t(q-i ) --F 0 ( ~ - 1 / 2 ) .  (9d) 

The second system of coordinates, denoted by K, )~, is obtained by a transformation 
similar to (7), namely 

+ i7 = (K + iX) z, ~ = K 2 - X 2, 71 = 2K)~. (12) 

Transformation of Eqns. (8) to the K, )~-coordinates yields 

3¢~ OV Oq 3V OZV O2V 
- -  -t (13a) 

O~, 0K 0K 0)~ OK 2 O~ 2 '  



69 

8~t' OF 3"1' 3F 
02' OK OK 3X 

t- 8V{(3K 2 2 ~ OV 2 ()V F 0 2 F  - X  )2,--~-~x-x + (x2 - 32, )K-~}  = 02--2---- 
0K 2 4- 02` 2 , 

(13b) 

16(K 2+h2)3F --32~+32~-- (13c) 
OK 2 02, 2 

The region of interest is now the sector of the K, 2,-plane between the lines 2, = 0 and 2, = K 
(argument between 0 and ~r/4). 

The boundary conditions are 

0q' 
r > / 0 ,  2' = 0 :  xt, = 0 ,  32' = 0 ,  V =  0 ,  (14a) 

3V OV 
2, = x:  't' = 0 ,  F = 0 ,  Or 32' 0, (14b) 

,I,  = v =  
x ~ o¢ (14c) 

F = x~)'( ~'2 ), where ~'2 = 4K22'. 

The final values ~0(~)  and V0(o¢ ) = 1 are approached exponentially. This means that 
these values are already approximated with great accuracy for a finite value of ~, say %. 
For ~->% and ~ o 0  one has potential flow, that is F = 0  and V = I ,  while ~ is a 
harmonic function; % was taken equal to 28. 

In both the ~, ,/-plane and the K, X-plane the region of interest is divided into 3 parts 
(see Fig. 1). Region I is the region where the full equations (8) and (13) must be 

q0 -- 

11 

30 

25 

20 

I11 

I I 

l 

I I 
5 10 

I I I I 

Figure 1. Division of the integration region. 
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considered. It is limited in the ~, ,/-plane by the curve 21/1 + ~ .71 = 28 and in the x, 
X-plane by 4~2X = 28. Region II is limited in the ~, ,/-plane by the line ~/= 30. Numerical 
calculations, which were performed in ~, ,/-coordinates show that it is justified to take 
V = 1 and F = 0 in region II. In regions II and III  only the harmonic function • has to be 
determined. In region III  no difference scheme for the numerical solution is necessary 
since the solution there can be given by aid of a Green's function. 

4. The asymptotic behaviour at infinity 

The asymptotic behaviour will be investigated in the x, A-plane. In region I the main term 
of the asymptotic behaviour is given by (14c). For region III  we introduce polar 
coordinates r, 0 in the x, A-plane. The asymptotic expansion of the harmonic function xI, 
with q' = 0 for 0 = 7r/4 is 

(°) xI' = pr3(cos 30 + sin 30) + Qr 2 cos 20 + Sr(cos 0 - sin 0) + T -~ - 0 , (15) 

where P, Q, S and T are constants to be determined. The highest power of r is 3 in 
agreement with the behaviour in region I. 

A useful asymptotic expansion in region II  is obtained by transformation of (15) to r, 
X-coordinates. This is 

(- ,16/ = px3 + 3x2Xp _ 3KA2p _ pA3 + Q r 2  _ QA2 + S x  - S X  + T -4 - t an -  

This expression must be matched to the asymptotic behaviour in region I. For A = 
72/(4x 2) ~ 0 we obtain 

qz = P x  3 + 3 P $  2 + Q x  2 + S x  + ~ T.  (17) 

Matching to (14c) yields P = ~p0(~). In order to determine Q, S and T we have to 
investigate what the further terms in the expansion in region I are. 

Let 2 terms of the expansions for xt' and V be 

~I t = K 3 ¢ o ( , r 2 )  + I ¢ 3 - k C k  ( ' r 2 )  , 

v =  v0(,2) + I , > 0 .  (18) 

The difference between ~'2 and ~" = Z X  -1/4 is O(~ -6) for x --o oo. There will certainly be a 
second term for k = 6 but we are interested in values of k smaller than 6. 

Substitution of xt' in Eqn. (13c) leads to 

r = + 

Substitution of q~ and V in Eqn (13a) gives as coefficient of/¢4 Eqn. (5a). The coefficient 
of K 4-k leads to the equation linear in V k and 6 , ,  

4V~' + 3~b0V ~ + k~b'oV k + ( 3  - k)V~)~b k = 0. (19) 



71 

Substi tut ion of qp, V and F in Eqn. (13b) gives as coefficient of xs, 

¢~¢~)' - 3¢0¢0'" + 8VoV ~ = 4¢to V. 

This equation can once be integrated. Determining the constant  of integration by using 
the boundary  condit ion (6) for ~'2 --* ~ ,  we find back Eqn. (5b). 

The coefficient of xS-k leads to the linear equation 

4 ¢ ~  v + 3 ¢ 0 ¢ / "  - (1 - k )  ¢;¢~,' - ¢ ; ' ¢ ~  + (3 - k )  ¢0'" Ck -- 8(  VoV £ + V;V k ) = O. 

Also this equat ion can once be integrated with the result that 

4@2" + 3¢0¢~,' - (4 - k )  ¢;¢~, + (3 - k)¢'O'¢k -- 8VoV k = 0, (20) 

where the boundary  condit ion 

• 2 ~ ,  ¢ ; ( , z ) ~ 0  and V k ( ' r z ) ~ O  

has been used. 
Now, the question is: can ¢ ~ , ( ~ ) b e  different from 0, that is, can ¢k(~'2) be linear in r 2 

for r2 ~ ~ ?  If this were so, • contains a second term x3-k~'2. Such term must  b e m a t c h e d  
to Eqn. (17), valid in region II for X ~ 0. It is seen that this is impossible for k < 3 but  
required for k = 3. 

Equat ion (19) then becomes 

4V~'+ 3(¢oV3)' = 0  

or, integrated, 

4V~ + 3¢oV 3 = 0 

with the solution 

V3(r)  = A exp( - ~ f0"¢0d,  ). 

Since 1/3(0 ) should be zero, we find that V3(r ) is identically zero. 
Equat ion (20) for  @3 now becomes 

4¢3"  + 3¢o¢; '  - ¢•¢; = 0 

with boundary  condit ions 

¢3(0) = 0, ¢~(0) = 0, 

For  ~2 ~ 0¢ we have ¢3(~2) = a'r 2 +/3  
integration leads to 

/3 = - 2.35267532. 

= 

with a = 3 ¢ o ( ~  ) = 1.268657333. Numerical  
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Returning to the asymptotic expressions (15), (16) and (17) it will be clear that 

O = O ,  S = O ,  T = 4 f l .  q,/, (21) 

5. The origin shift and the first eigenfunction 

The asymptotic behaviour in region I, 

34 ( S@/4 ) ( S@/4 ) q l -  X / ~o , V -  V o for X ~ o o ,  

would also be valid if the edge of the disc were not at X = O, but at some other finite value 
of X. Hence 

Z 
xI' - ( X + a)3/4 6o( ( X + a)l/4 ), 

Z 

also describes the asymptotic behaviour. For small values of a the differences between the 
two expressions are terms with "ag/OX and aV/OX. Hence aff'/OX and OV/aX must also 
be present in the asymptotic expansion of q' and V, respectively. We calculate these 
derivatives from the asymptotic behaviour, given above, as 

aft' 1 ~'2~), ~V 1 
- ~  = 4--K-K (3~k°- 0X = - 4x 4~'2V; for x--* oo. 

The asymptotic expansions (17) can now be extended as 

XIt -~- K31~0(q'2) + 1~3 ('1"2) "Jr- K-l@4(q'2), 

r = + + (22)  

v =  v0(,=) + 

where ~k4(r2) = c(3~k0- ~'2~k;) and V4(~2) = -c~'2V ~ with c a constant, which cannot be 
determined from asymptotics but which follows from the complete solution of the flow 
field. The eigenfunctions ~b4(~2) and Va(r2) satisfy Eqns. (19) and (20) for k = 4 and the 
boundary conditions 

~4(0) = 0, ~ ( 0 )  = 0, ~ ( ~ )  = 0, 114(0) = 0, V, (o~) = 0. 

There exists no smaller value of k which admits a non-trivial solution of Eqns. (18) and 
(19) with homogeneous boundary conditions. 

6. Numerciai calculations (theory) 

The numerical calculations have been performed in the ~, ,/-plane since these coordinates 
are better adapted to the behaviour near the origin. 



Since F goes to infinity near the origin, we introduce a new variable 

K= (~2+n2)r. 

The equations (8) then become 

0 q  OV Oq' OV 02V 02V + - -  
37 04 0~ 37 0~ 2 072, 

0~t ' 3K 0~t ' OK 
o7 3~ o~ on 

2K ( ~ 0 ' ~ ' _ 7 ~ ( ) + 4 ( 4 2  + 2,V{ aV ~OV 1 ~2+72\ 07 7 ; ~ 7 ~ +  ~ j  

+ 
4 { 0K 0K ~ 02K 02K 

? - ; V e  + 7 g - K  ) = + --,o72 

02xIt 02xI/ 
4 K =  - -  + - -  

042 072 ' 

0q, 
4 > 0 ,  7 = 0 :  ,I, = 0, 07 = 0 ,  V - 0 ,  

a v  
4 = 0 ,  7 > 0 :  ,I, = o, K = 0 ,  ¢ 0---7=0, 

4 ~ o~, ca finite: ~t' - 43/2q, o(¢1), K -  45/2+~'(¢,). 

In region I we transform Eqns. (24) to new coordinates, defined by 

7 with A ( 4 ) =  1 
4 1 = 4 '  ¢1= A(4)  2¢1 +-------~ 

Writing again 4 instead of 41, the result is 

A 
0 ~  3V Oq t OV' t=  02V 
0¢1 34 04 G-~I] 042 

,'~ r~ 02V (R4¢?_I_R5) ~/V2 0¢1' _ _  _ z t H ¢ l ~  + + R3¢1 0V 

A ) ( O~ OK ~ OK 2K 7A'rl + 4 3q t 7~-  
0¢1 04 04 0¢1 42 +72 A 0¢ 1 

+ 2 - [ 3 V  +4(42 , ;v(7-ff + 4-7A"q 3~) 4 ( aK n-4A'¢, OK 
A + ~2+n2 4-~ + A 3¢, 

02K OK a2K _ 2 R 1 r  I a2K + ( R 4 ¢ 2 + R 5 ) _ _  +R3¢ 1 
0~2 ~ 3¢2 0¢,' 
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(24a) 

(24b) 

(24c) 

(25a) 

(25b) 

(25c) 

(26) 

(27a) 

(27b) 
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K= - -  - 
O2xit ,'~ n 02xlt R ~ 02q' 3K 
0f 2 Z/X1'FI~--~ff~-T1 +(R4"r? + 5] 3"/'? "~-R3'/'1~T1 ' (27c) 

where 

d '  A '2 A" A '2 1 
R = ~ - ,  R3=2  ~ A ' R 4 =  A 2 '  R s = ~ "  

In order to keep the dependent variables finite for f ~ oo, we introduce 

,qt(f, ~'1) K(f,  ¢1) 
- - ,  - - .  (28) qffl(~''rl)- (1+~)2 K l ( f ' ' r l ) -  ( l + f ) 3  

Both q'l and K 1 vanish as O(f -1/2) for f ~ oo. The equations for 't' 1, K i and V become 

A or, 0,~ of ~ - - - - - V - -  0~-, 

02V 

0~ 2 
02V R "132V OV 

2Rl ' r l~-~l  +(Ra'r12+ 510.r2 +R3'rl0,rl' (29a) 

(1 + ~)2 [ 0xlt I OK 1 

A I 0~" 1 Of 
aq'l 0 K 1 ) - ~ (  2(1+~)(nA'¢1 
Of Or 1 + 3 -  f2+rt2 

0,t,~ 
+ f) K1 O'q 

+ 2 . ( ~ +  ~__)~ ,. 0% 
f2 .4_ T/2 /X'I Of 

2(1 + f) ~, OK 1 4~/(1 + f )q lKa  
A i O~q + ~2+.02 

+ 0V 4(~2+'q2) V r t '~  + 
(1 + f)~ 

f - ~/A"q 3V / 
A 0¢ 1 / 

02K1 
0~ 2 

32K, .02K1 ( 6 4f )OK1 
2&~'0-g~,+(R4~?+&)-ff~-q + l + f  C + , 2  of 

6R,z, 4(71 - fA'¢l) ) 3K 1 
+ R3"q l + f  (f2 + T/2)A 3"/" 1 

6 12f 4 } 
+ (l+~J) z ( l + f ) ( f z + r / 2 )  "]- f2 q,_ ,l,'''''"" ~ K1, (29b) 

4(1 + f )K 1 32~t'1 02~t'~ ) 02~a 4 0~I'~ 
- of ---~- 2RI*~a--ff~+(R"'(+R~ 0,? + l + f  0f 

4Rk 1¢ 0~, 2 ~t',. (29c) 
+ R3 l + f ]  ' "~1  + ( l + f )  2 
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One more transformation for each of the independent variables ~ and ~'1 has been 
performed. The infinite interval ~ ~ [0, oo) has been transformed into o ~ [0, 1] by the 
relation 

o = with c = 0.25. (30) 2 

Given o, ~ follows from the quadratic equation 

(1 - a)2( 2 -  2a{(o  + 1)c 2 - ( o -  1)}~+ a2(c 2 -  1) 2 = 0 .  

For ~ + oo it is easy to show that 

1 - o = 2c~  - 1 / 2  + O(~-1).  

Thus, q~a and K 1 vanish for a --* 1 like O(1 - o). 
The transformation of ~1 ~ [0, 28] to / t  ~ [0, 1] is realized by 

~'1 = 4/t + 24/t 4. (31) 

The advantage of this transformation is that an equidistant distribution of points in /t 
leads to a greater density of points for small than for large values of za, which better 
corresponds to the behaviour of the dependent variables. 

Derivatives to ~ in Eqns. (29) are now replaced by derivatives to o using 

0 do 0 02 { do ~ 2 0 2  d2o • 0 
0---~ = d~ 00 '  0~ z = ~ ~ - ] / - - 0 o  2 + d--- S O---o 

with similar formulae for the change of ~'l-derivatives to/t-derivatives. 
Next, the o and/t-derivatives are replaced by central differences applying an equidis- 

tant grid with meshes h and k in the o , / t  unit square. 
The boundary conditions are 

(i) /t = 0, ~ '(o,  0) = 0, V ( o ,  O) = O, 

( d/t~,l )2 8xl~(o,k)_Xitl(O, 2k ) 8 k 2 (  1 't~ ~) (32) K, (o ,  0 ) = R s ( ~  ) a -  
.'rl ~0 

The last formula is the so-called plate condition, which follows from Eqn. (29c) using 

~1 ~'1 0 for z 1 = 0 .  

The error in this formula is O(k2). 

( i i )  o = 0,  ~1  ( 0 , / ~ )  = 0,  K,(0 , / t )  = 0. 



76 

The boundary condition OV/O~ = 0 in ~, T-coordinates, see Eqn. (25b), becomes in ~, r 1 
coordinates 

o v  R,(0)  0V 
O~ rl 0~--7 = 0, 

which leads to the discretized result 

3V(0,/*) = 4V( h, I* ) - V(2h, p) - 
d'q 

--~ ~,=0 

h 
{ v ( o , .  + ~,) - v ( o , .  - 1,) }. 

(33) 

Also this formula has an error which is quadratic in the mesh lengths. 

(iii) /~=1,  V(o, 1) = 0, K , (o ,  1) = 0. 

Along this boundary the function ~1 should be continued smoothly into region II. 

(iv) o = 1 ,  ~ , ( 1 , # ) = 0 ,  K , ( 1 , # ) = 0 ,  V ( 1 , # ) =  go(e,).  

Region H is limited by 

o = 0 ,  o = 1 ,  ¢1 = 2~/1  + ~ • Tb = 2 8  a n d  To = 3 0 .  

In this region coordinates ~1 and )~, defined by 

~1 = ~, x = (34 )  
no-n~(~) 

are used. 
Writing again ~ instead of ~1 and introducing at the same time ~t' 1 instead of ~I' in Eqn. 

(24c), this equation becomes 

a2~Iq 2(~ - 1)T~, 02~Iq (?~ - 1)2T'b 2 + 1 O2~tq 4 O'Iq - - +  - - +  + - - - -  
0~ 2 TO -- Tb 0~0)~ (TO -- Tb) 2 b~2 1 + ~ 0L5 

?~- 1 [ 4T; 2T'------ b2-~b2 1 a~I' 2 + / + " +  ] - ~ -  + - -  q'  = o. (3s) 
T o - T o  ~ To T o - T o  ( 1 + ~ ) ~  

The transformation from ~ to o is again used. 
The boundary conditions for region II are as follows: 

(i))~ = 0 : Smooth continuation of g'l toward region I, 
( i i )  o = 0 : ~ 1  (0 ,  ~ )  = O, 

(iii) ?~ = 1 : S m o o t h  continuation of ql  toward region I I I ,  

(iv) o = 1 : g'1(1, )Q = O. 
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The o and h-derivatives in the equations are again replaced by central differences using 
an equidistant grid with meshes h and I in the o, X-unit square. 

At h = 0, the boundary between regions I and II, we also apply Eqn. (35). Derivatives 
to X at h = 0 can only be approximated by differences based upon the unequal meshes 
h -= l and X = X-(o), where X-(o) denotes the negative X-value corresponding to the points 
in region I with g = 1 - k. 

In region I I I  we consider the equation 

a2~ t- a2-----~-~ = 0. (36) 
a42 an 2 

The boundary conditions are: 
(i) f = 0: 9(0,  ,/) = 0, 

(ii) , /=  */0 : Smooth continuation to the solution in region II. 
(iii) In the ~, ,/-plane the asymptotic behaviour' in polar coordinates is 

a: = p:3/2(cos]O + sin-~0)+ Qlr cos 0 + S:l /2(cos½0 - sin½0)+ ?'1(2 - 0). (37) 

Matching to region I means */ small in such a way that 4 1 / 2 . /  = z / 2  remains finite for 
f ~ oo. With 

,/2 ) _ */_.__!_2 sin½0 71 
r = 4 1 + - ~  , cos½0 = 1 8f2,  = 2-'~ ' 

we obtain 

7/" 'gl = P,( 4 3/2 + ~r) + Q, f  + S , f  '/2 + "~ T1. (38) 

From relations (11) and (14c) we find that both r and r 2 may be replaced by 

+o(f -2) 

and hence the asymptotic behaviour of q' in region I follows from (9c) and (18) as 

For T 1 -* o¢ (*/ small but unequal to 0), the exponential decrease of +~(rl) and the 
asymptotic behaviour of ~b3(~1), given in Section 4, make that we can write 

and hence, by comparison with (38) we have 

P, =+o(+), 
2 

Q, = o, = o, T, = ; #. 
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The asymptotic behaviour of if' in region III (and also in region II) is then obtained from 
(37) as 

~ = ~bo(OO) . r3/2(cos30 + sin30) + f l ( 1 -  2~0 ). 

Since the right-hand side is a harmonic function, we now introduce the harmonic function 

q,z( $, ~l) = q,(~, rl)_6o(OO).r3/2(cos~O + sin{O) , f l(l  _ 28 ), (39) 

which vanishes at infinity, satisfies q'2(0, , / )=  0 and should be in agreement with the 
solution of region II along the line 7/= 70. 

The solution of q'2 in region III is obtained by a method due to Botta and Dijkstra [7], 
which uses a Green's function for the Laplace equation in the quarter-plane. This function 
is 

Gt l ' (P ,  Q) = 2-~ Re 'log ~-w2--~-~l 2- w2 

where P = (A, #), Q = (~1,/'tl)' W = ~ + i~, W 1 = X 1 -t- i#1, ~k, )kl, /X, /.tl, >~ 0 and Re stands 
for "real part of". 

When the harmonic function ¢ (Q)  vanishes along the boundary/~ = 0 and at infinity, 
we obtain for ¢ in an arbitrary point P, 

: . . I- w 2 -  w? 1 
2crew(P) = - / ¢ (Q) / -z - - -Re  log --7-------= / d~l ,  

¢0 [ 0~1 W 2 - -  W * (  J t t  1=0 
Q = (2~1, 0), 

or 21r~(P) = - 4fo~q~ (Q) Im~d~,, 

where Im denotes "imaginary part of". 
For points P lying near the boundary/z = 0 we modify the last integral as follows 

/*  
- 4~(Q ) /  Im _--~------~-2 d XI, 2¢rO(P) = - 4 f o ° ° { q ~ ( Q ) - q ~ { Q ' ) }  I m ~ d X ,  , .,,,°° A1 

0 W - - A  1 

, where Q' = ()k, 0) is the projection of P on the boundary # = 0. 
The last result can be reduced to the form 

¢re~ ( P )  = (or - 20) q,(Q') + 4X#fo~{ q,(Q) - q,(Q') } X'dhl 
(;k2 - )~ 2 + #2)2 + 4h2/~2 ' 

where O = arg w = tan-  1 (/~/~). 
Applying the last formula to the harmonic function g'2 in the ~, ,/-plane with values 
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given along the line 7 = 70, the result is 

~rxI'2(4, 7 ) =  (~ r -  tan 1 7 ~ 7 0  )q'2(4, 7 0 ) + 4 4 ( 7 - 7 0 ) £ = {  ~I'2(4', 7 0 ) -  't'2(4, 70)} 

x 4'd4' . (40) 
{4 n -  42 + ( 7 -  70)2} 2 + 4~2(7-  7o) 2 

The remaining integral is evaluated by aid of quadratic approximations of ~2(4', 7 0 ) -  
g'z(4, 70) in each interval 4,.-1 ~< ~' ~< ~i+~ wi th j  odd. This allows analytic calculation of 
the integral in each interval, see [7]. The points 4j correspond to the mesh points obtained 
in the equidistant o-distribution. 

The points ~, 7 in region III where xI' 2 is calculated from (40) have the same 4-values (or 
o-values) as the points in regions I and II, while 7 is defined by (34) with k = 1 + l, where I 
is the mesh length of the k-distribution. Thus 

7=7o+t{7o-7 (4)}. 

The values of xt'2(4, 70) follow from (39) by substitution of 

* ( 4 ,  7) = (a + 4)%,(4,  7o), r =  ~ +  772, 0 = tan -1 7o 

Having obtained xt'2(4, 7) from (40), the corresponding value of ~1(4, 7) is given by 

1 { , j12(4 ,7)+~o(~)r3/2(cos30+sin30)+~(120r)}  ' (41) 
%(4, 7) - (1 + 4) 2 

where r = ~ + 72 , 0 = tan-  17/4. 
Then, an improved value of q'1(4, 70) can be obtained from the same formulae as 

applied in region II, using the (o, X)-grid with 

0 ~ o ~ 1 ,  O ~ h ~ l + l .  

7. Numerical calculations (practice) 

The final solution for V, K a and 9a was obtained by application of the 5-point 
SOR-method. 

One iteration step consisted of the following actions: 
(i) calculation of V from Eqns. (29a) and (33) in all points of region I. 

(ii) calculation of K 1 from Eqns. (29b) and (32) in all points of region I. 
(iii) calculation of xI, a from Eqns. (29c), (35) and (41) in all points of regions I and II as 

well as in the points X = 1 + l. Equations (29) and (35) are used, of course, in their 
difference form. The relaxation factors were 0.6 for V, 0.5 for K 1 and 1.65 for 9~. 
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The following initial values were taken: 

region I: V =  V0(~'~), K~ = - -  
+ ~ 5 / 2  

(1 + ~)3 
¢ o ( ' 1 ) ,  'I'1 ~ +  ~3/2 " = - -  ¢ 0 ( ' ~ ) ,  

(1 + ~)2 

region H: ~] ~ + ~3/2 -- ~ ~ 0 ( o o ) .  
(1 + ~)2 

These values have the correct behaviour for ~ --* 0 and ~ ---> oo as far as the main terms are 
concerned. 

In order to check the solution, 3 different grids have been used. The coarsest grid is 
defined by 

h = 0.1, k = 0.1, 1 = 0.2. 

The two other grids were obtained by twice reducing all meshes by a factor 2. 

8. Results 

8.1. The azimuthal velocity V 

In Fig. 2 curves of constant V-values in the X, Z-plane are presented. The curve denoted 
by V= 1 means in fact V= 1 - 0.5 × 10 -5. According to Rogers and Lance [4] the value 

~" ] 1.00 

• t! 

l \ 

/ '  / 
-q -5 -6 -7 

× 

Figure 2. Lines of constant azimuthal velocity V. 
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× 

Figure 3. Lines of constant streamfunction q'. 

V = 1 is approached for ~ -o ~ as e - ~  with a = 3~b(oe). However,  the present calculations 
suggest that  for small values of  ~ (that is along the axis with negative values of  X)  the 
approach  to V = 1 is no longer monotonous  but  contains a small oscillating factor. The 
corresponding overshoot is limited to 1.00020. Hence, it is not  quite sure whether this is a 
real phenomenon  or that it is due to a discretization error. 

It follows from (4c) that for ~ ---> oo (large positive values of  X)  the curves V = constant  
have the asymptot ic  behaviour X = c Z  4. 

8.2. The streamfunction vI" 

Figure 3 shows streamlines (xI" = constant)  in the X, Z-plane. It is seen that for negative 
values of  X (outside the disc) xI, is propor t ional  to Z, while for positive values of X (at the 
disc) ,t, is propor t ional  to Z 2. Asymptot ical ly  for X - o  o¢ the curves behave like X Z  8 = c. 

The non-scaled streamfunction + --- R e -  1 az is O ( R e -  1 ) in the Navier-Stokes region, see 
(2). However,  for X - o  oo xI, becomes infinite like X 3 /4=  Re~/2(1 - r )  3/4. This matches 
the s treamfunction ~b in the boundary- layer  region which is O(Re-1 /2 (1  - r)3/4). 

8.3. The vorticity F 

Curves of constant  P are shown in Fig. 4. The curve F = 0 means in fact F < 0.5 x 10 -5. 
Analogous  to the situation with V, the exponential  decrease toward F = 0 for large 
contains for small ~ an oscillating factor leading to a maximum of F = 0.00004. 

For  ~ ---, oo, i.e. X -o oo, F becomes infinite like X 1/4. For  Z = 0 and negative X we have 
F = 0 .  
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X 

Figure 4. Lines of constant vorticity F. 

At the origin the value of F is indefinite. All curves for positive F lead to the origin and 
are tangent to the negative X-axis at the origin. Approaching the origin along a straight 
line leads always to I" ~ oo (except along the negative X-axis). 

The non-scaled vorticity 3' is O ( R e  1/3) in the Navier-Stokes region. For X ~  o0, F 
becomes infinite like X 1/4 = Re1~6(1 - r)l/4. This matches the vorticity 3' in the boundary 
layer region, which is O(Rel /2(1  - r)l/4). 

8. 4. The tangential shear stress zt* 

An asterisk denotes a physical quantity not made dimensionless. Then 

Or* OV OV = ½p,~Re2/3 1 0 V  
"rt* = I ~ z *  = Ix~-~z = txf]Re2/3 0Z  ~ OZ" 

Since # = pv = p a 2 ~ R e  - t ,  the shear stress becomes 

,rt, = ½pa2~2Re_l/3 1 0 V  
o , 7  " 

Using Eqns. (26) and (31) to transform the derivative to ?7 into a derivative to #, we obtain 

.rt, = ]pa2~2Re_ l /3  ~/1 + ~ OV 
Or" 
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Since the derivative in this formula should be taken at/~ = 0 and since V(o,  0) = 0, the 
final result for the dimensionless shear stress is 

~.t=-~kRe + ~ (4V(o,  k ) -  V ( o ,  2k)} .  

For X ~  ~ ~, vanishes like X-I/4=Re-I/6(I-r) -1/4. Hence, the shear stress in the 
boundary-layer region becomes infinite like O(Re-1 /2 (1  - r)-1/4) .  

Figure 5 shows ReW3"rt as function of X. For X---,0 ~', becomes infinite like 
0.502 Re - 1/3 X -  1/2. 

8. 5. The radial shear stress .r~* 

The radial shear stress is given by 

~u* 

C = u Oz* " 

We reduce 

Ou* Ou OU 
C = #~z*  = IX~~z = I ~ R e l / 3 0 Z  

= _ i ~ R e  W3 02qt 
OZ 2 

_ l ~ R e , / 3 i  ` = _pa2~2Re_2 /3  (1 + ~)3 K,(~,  0). 
~2 

J 

tl. O0 

3.50 

3.00 

2.00 

1.00 

~ 
i j "  

10 9 8 7 6 5 ti 3 2 I 0 0.00 

Figure 5. The tangential shear st ress  Rel/3~" t as function of X. 

0.SO 
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For ~ ~ 0 K] vanishes like O(~) according to (10), which implies that rr becomes 
infinite like 1.234Re-2 /aX - 1/2. 

For ~ ~ o¢ g 1 vanishes like O(~ -1/2) and, hence, % becomes infinite like ~1/2 = X1/4 = 
Re]~6(1 - r)  1/4. This matches the radial shear stress in the boundary layer which vanishes 
like O( Re-] /2 (1  - r)1/4). 

Figure 6 shows Re2/3~" r as function of X. The negative values denote that the radial 
stress is directed toward the disc centre. 

8. 6. The torque M* on the disc 

The torque M* is given by 

M* = 2~" foa~'t*r*2dr *. 

We are interested in the contribution of the Navier-Stokes region to the torque. Let this 
region extend from r* = r  o* to r* = a, where a -  to* = aO(Re-2 /3 ) .  Retaining only the 
main term in O ( R e )  we have in this region 

r* = a, dr*  = - a R e - 2 / 3 d X  = - 2 a R e - 2 / 3 ~ d ~ .  

while 

,rt* ---- pa2~2,rt = pa2~2Re- l / 3  VI1 0,rl " 

I -15 

-12 

-10 

-8 

i 4 

-q 

/ J 

10 S 8 ? 8 ~ $ g 

Figure 6. The radial shear stress Re2/3"rr as function of X. 

! 0 0 
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Hence, the contribution of the Navier-Stokes region to M* is equal to 

4~rpaS~2Re-l f~° OV~/'l + ~d~, 
Jo O~ 

where ~o is the ~-coordinate corresponding to the point ro*. For ~o ~ o~ the integral 
diverges. This is due to the fact that boundary-layer theory leads to a torque O(Re-1/2). 
According to boundary-layer theory the tangential shear stress is 

Ov Tt*~ / ~ ' ~ Z  ~" ~ - ~ T  Rel/2(1 - r ) - 1 / 4 -  paE~2Re_ l/2 ~ (1 - r )-1/4. 

Integration over the Navier-Stokes region yields 

'.',, 5020o_1 /2  f l  Ou (1 . ,ca  . . . . .  Jr ° - ~  ' -- r ) - l / 4 d r  

5 2 1 I'X° O V v  1/4,4 =2~tpa fiRe- Jo -~a-  uX 

= 47rpa5622Re- ' fo~° ~-~ l~'/2d~. (42) 

The additional moment due to the fact that near the edge of the disc the Navier-Stokes 
equations should be used instead of the boundary-layer equations is 

M~ =4¢rpaSf~2Re-lfo~ { OV ~-~T V/1 q- ~ -  V~(0)v~)d ~. 

This integral converges since 

0V - -  0V - 
~-~ ~/1 + ~ -- -~-~/~ and V= V0(~ ) + O ( U  2) for .~ --, ~ ,  see (22). 

The final result is 

k) V(o, M~=4~rpaSfl2Re_lfol(4V(o, -- 2k) ¢1 + , _ V~(O)¢~} do 
d o / d ~  

or, after evaluation 

M~ = 4.02paS~2Re -1. 

Since the integral in (42) diverges like O(~03/2) = O(X 3/4) = O(Rel/2), it is clear that 
the boundary-layer contribution to M* is O(Re-1/2). 

8. 7. The pressure p at the disc 

According to the equation of motion given in Section 2 we have at the disc 

O__p_p = Re_ a 02U 
Or Oz 2 
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or, in the Navier-Stokes region, 

3p Re_2~3 32U = Re-2~ 3 03"dZ = Re- 2/3 0F 
OX OZ 2 OZ 3 OZ" 

Integration leads to 

23.t0rX0.~_..~ d X = O F  . . .  Re-2/3f'°~I'd,jo.d~l p-p(O)=Re-  / I 

=2Re-2/3 Jor~°-~ r:~ dl~ = 2Re_2/3 f~o.10 oKIO~'I ( 1 ~  ~j) 7/2 d~, 

where p(0) is the pressure exactly at the edge of the disc. It will later be shown that this 
pressure is finite. 

Since for ~ ~ oo, K 1 - O(4-1/2), the integral is divergent. As in Section 8.6, this is due 
to the fact that boundary-layer theory leads to pressure differences at the disc which are of 
a larger magnitude than O(Re-2/3). In order to obtain a convergent integral we have to 
subtract the contribution of boundary-layer theory which can be done by subtracting the 
asymptotic expansion of OK/3z for ~ -o o0. Using (22), this expansion appears to be 

OK ,=o = ~/2¢o" (0) + iV,;" (0) + ~'/:q,~'" (0) + O(t -'/~) 
~)'r 

~-- ,  oo. 

Since ¢0'" (0) = - 1, ~3" (0) = 0, ~4" (0) = 0, the result for the pressure is 

p_p(O)= 2Re-2/3 fo~( aKl (1+ ~)7/2 1 azl ~2 + ~ d~ (43) 

and this integral is convergent for ~ ~ oo. 
The boundary-layer contribution is equal to 

p --p(0)lb.C= -2Re-2/3fo~d~ = -Re-2/3~ 2 = r -  1 

or 

p* - p*(0) lb.,.= pa2~2(r- 1). (44) 

This is exactly in agreement with the pressure due to the centrifugal force, which is 

p* = ½pa2~2r 2, p*(0) = ½ p a 2 f l  2 

and hence leads, in first approximation again to (44). 
It remains to show that p(0) exists, which means that the integral in (43) should 

converge at the lower boundary. It has been shown in [7] that the next term in the 



87 

expansion (10) of if' near the origin is 

~ = B ( ~ 3 ~ 2 _  ½~4). 

It follows from Eqns. (8) that near the origin this second term also satisfies 

AxIt=4(~2+n2)I"  and A F = 0 .  

Hence F = ½~B and K = ½~(~2 + ~/2)B" 
Then for ~ -~ 0, OK/O'r I = ½0K/O~ = ½~/B, which vanishes for B = 0. Hence OK/O.q is 

at most O(~ 2) for ~ ~ 0 and this guarantees the convergence of the integral in (43) at the 
lower boundary. 

Due to the inaccuracies in the numerical calculation of the integrand in (43), both for 
small and for large values of 4, it appeared to be impossible on the basis of the performed 
calculations to present reliable results for the pressure term of O(Re-2/3).  

8. 8. The velocity U outside the disc in the plane Z = 0 

The plane Z = 0 outside the disc corresponds to ~ = 0. We have 

t v= oz :n ~ .= 2n -~- ,,-"R'(")W 

U 

I 

i f , i 
I i i 

--0,60 

-O.qO 

-0.2'0 

i 

I 
I 

1 
/ 

0o00 0 -I -2 -3 -tl -5 -6 -~ -8 

X 

Figure 7. The velocity U outside the disc in the plane Z = 0. 

-9 -10 



88 

F o r  ~ = 0 h o l d s  8~1/0~ 'a  = 0 a n d  hence ,  

U = - 2 - ~ t - - ~ -  , , =  2~ ( l + f )  - - ~ - + 2 ( l + f ) q ' ,  

U s i n g  (30) for  c a l c u l a t i n g  d o / d r  = 1 / ( 1  + c)  2 if  f = O, we f ind  

4 q ' a ( h ,  7/) - '~1(2h ,  7/) 
f = - 

4h~/(1  + c)  2 

T h u s  

u* = - a ~ R e  - 1 / 3  4 q , ( h ,  ~/) - XI'l(2h, ~/) 

4h~i(1 + c)  2 

F i g u r e  7 shows  R e - 1 / 3 U  a s  f unc t ion  of  X. 

1 0q,~ 

277 ~ "  

A c k n o w l e d g e m e n t  

T h e  a u t h o r  w o u l d  l ike  to  t h a n k  Dr .  A .E .P .  V e l d m a n  a n d  Dr.  E . F . F .  B o t t a  for  v a l u a b l e  

d i scuss ions .  
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